# Get the sample cube for HadCRUT5
# Basic version, global-mean-annual-mean, one ensemble member.
import os
import iris
import numpy
import datetime
def get_sample_cube(start=datetime.datetime(1851,1,1,0,0),
end=datetime.datetime(2018,12,31,23,59)):
# Choose one ensemble member (arbitrarily)
member = numpy.random.randint(100)+1
# Load the HadCRUT5 analysis data
h=iris.load_cube("/scratch/hadcc/hadcrut5/build/HadCRUT5/analysis/"+
"HadCRUT.5.0.0.0.analysis.anomalies.%d.nc" % member,
iris.Constraint(time=lambda cell: start <= cell.point <=end))
# Make annual averages
iris.coord_categorisation.add_year(h,'time',name='year')
h=h.aggregated_by('year',iris.analysis.MEAN)
# Make area-weighted global means
grid_areas = iris.analysis.cartography.area_weights(h)
h_mean = h.collapsed(['latitude', 'longitude'],
iris.analysis.MEAN,
weights=grid_areas)
ndata=h_mean.data
dts = h_mean.coords('time')[0].units.num2date(h_mean.coords('time')[0].points)
return (ndata,dts)