# Get the sample cube for HadCRUT5
# Monthly, resolved in latitude, sampling in longitude, one ensemble member.
import os
import iris
import numpy
import datetime
def get_sample_cube(start=datetime.datetime(1851,1,1,0,0),
end=datetime.datetime(2018,12,31,23,59),
new_grid=None,rstate=None):
# Might want the longitude random sampling to be reproducible
if rstate is None:
r_long = numpy.random.RandomState(seed=None)
else:
r_long = rstate
# The ensemble random sampling need not be reproducible
r_ensemble = numpy.random.RandomState(seed=None)
# Choose one ensemble member (arbitrarily)
member = r_ensemble.randint(100)+1
# Load the HadCRUT5 analysis data
h=iris.load_cube("/scratch/hadcc/hadcrut5/build/HadCRUT5/analysis/"+
"HadCRUT.5.0.0.0.analysis.anomalies.%d.nc" % member,
iris.Constraint(time=lambda cell: start <= cell.point <=end))
if new_grid is not None:
h = h.regrid(new_grid,iris.analysis.Nearest())
dts = h.coords('time')[0].units.num2date(h.coords('time')[0].points)
# Sample in Longitude
s=h.data.shape
ndata = numpy.zeros((s[0],s[1]))
for t in range(s[0]):
for lat in range(s[1]):
rand_l = numpy.random.randint(0,s[2])
ndata[t,lat]=h.data[t,lat,rand_l]
return (ndata,dts)