Oldstyle Assimilation with precipitation observations¶
The oldstyle assimilation makes no assumptions about what the observations to be assimilated are: It will take anything as long as it is possible to infer the MSLP output field from them. So we should be able to use exactly the same method (and code) to assimilate (pseudo-)observations of precipitation (rather than MSLP).
Then we can train a model to make an MSLP field from the pseudo-observations. Exactly the same code as for the MSLP observations version (except for the data source and the normalisation).
#!/usr/bin/env python
# Estimate prmsl fields from (simulated) observations with the coverage of
# 20CRv2c obs in March 1916.
# Use observations of prate.
import os
import tensorflow as tf
#tf.enable_eager_execution()
from tensorflow.data import Dataset
import ML_Utilities
import pickle
import numpy
from glob import glob
# How many epochs to train for
n_epochs=50
def normalise(ic):
ic = tf.math.sqrt(ic)
ic *= 100
return ic
# File names for the serialised tensors to train on
input_file_dir=(("%s/Machine-Learning-experiments/datasets/"+
"20CR2c/prmsl/training/") %
os.getenv('SCRATCH'))
training_files=glob("%s/*.tfd" % input_file_dir)
n_steps=len(training_files)
train_tfd = tf.constant(training_files)
# Create TensorFlow Dataset object from the file names
field_data = Dataset.from_tensor_slices(train_tfd)
# We don't want the file names, we want their contents, so
# add a map to convert from names to contents.
def load_tensor(file_name):
sict=tf.read_file(file_name) # serialised
ict=tf.parse_tensor(sict,numpy.float32)
ict=tf.reshape(ict,[91,180,1])
return ict
field_data = field_data.map(load_tensor)
# Use all the data once each epoch
field_data = field_data.repeat(n_epochs)
field_data = field_data.batch(1)
# Same with the test dataset
input_file_dir=(("%s/Machine-Learning-experiments/datasets/"+
"20CR2c/prmsl/test/") %
os.getenv('SCRATCH'))
test_files=glob("%s/*.tfd" % input_file_dir)
test_steps=len(test_files)
test_tfd = tf.constant(test_files)
field_test_data = Dataset.from_tensor_slices(test_tfd)
field_test_data = field_test_data.map(load_tensor)
field_test_data = field_test_data.repeat(n_epochs)
field_test_data = field_test_data.batch(1)
# That's the targets - now make a matching dataset of the
# station observations.
# Use the file names from the field files, but repoint them;
# also adjust to use the training/test split from the field files
def load_observations(file_name):
# Get the ob tensor file name from the field tensor file name
file_name=tf.strings.regex_replace(file_name,
'prmsl','prate')
file_name=tf.strings.regex_replace(file_name,
'datasets/','datasets/obs_1916/')
file_name=tf.strings.regex_replace(file_name,
'test/','training/')
file_name=tf.strings.regex_replace(file_name,
'training/2009','test/2009')
sict=tf.read_file(file_name) # serialised
ict=tf.parse_tensor(sict,numpy.float32)
ict=normalise(ict)
ict=tf.reshape(ict,[488,])
return ict
obs_data = Dataset.from_tensor_slices(train_tfd)
obs_data = obs_data.repeat(n_epochs)
obs_data = obs_data.map(load_observations)
obs_data = obs_data.batch(1)
# And the test observations
obs_test_data = Dataset.from_tensor_slices(test_tfd)
obs_test_data = obs_test_data.repeat(n_epochs)
obs_test_data = obs_test_data.map(load_observations)
obs_test_data = obs_test_data.batch(1)
# Zip the target and source together for training
training_data = Dataset.zip((obs_data, field_data))
test_data = Dataset.zip((obs_test_data, field_test_data))
# Need to resize data so it's dimensions are a multiple of 8 (3*2-fold pool)
class ResizeLayer(tf.keras.layers.Layer):
def __init__(self, newsize=None, **kwargs):
super(ResizeLayer, self).__init__(**kwargs)
self.resize_newsize = newsize
def call(self, input):
return tf.image.resize_images(input, self.resize_newsize,
align_corners=True)
def get_config(self):
return {'newsize': self.resize_newsize}
# Build the model:
# obs->dense network->convolutional network->field
# Input placeholder
original = tf.keras.layers.Input(shape=(488,))
x = tf.keras.layers.Dropout(0.9)(original)
# Obs processing layers
x = tf.keras.layers.Dense(512)(original)
x = tf.keras.layers.LeakyReLU()(x)
x = tf.keras.layers.Dropout(0.5)(x)
x = tf.keras.layers.Dense(512)(x)
x = tf.keras.layers.LeakyReLU()(x)
x = tf.keras.layers.Dropout(0.5)(x)
# Need to make a 10x20x8 layer for decoding
x = tf.keras.layers.Dense(1600,
activity_regularizer=tf.keras.regularizers.l1(10e-5))(x)
x = tf.keras.layers.LeakyReLU()(x)
encoded = tf.keras.layers.Reshape(target_shape=(10,20,8,))(x)
# Decoding layers
x = tf.keras.layers.Conv2D(8, (3, 3), padding='same')(encoded)
x = tf.keras.layers.LeakyReLU()(x)
x = tf.keras.layers.UpSampling2D((2, 2))(x)
x = tf.keras.layers.Conv2D(8, (3, 3), padding='same')(x)
x = tf.keras.layers.LeakyReLU()(x)
x = tf.keras.layers.UpSampling2D((2, 2))(x)
x = tf.keras.layers.Conv2D(16, (3, 3), padding='same')(x)
x = tf.keras.layers.LeakyReLU()(x)
x = tf.keras.layers.UpSampling2D((2, 2))(x)
decoded = tf.keras.layers.Conv2D(1, (3, 3), padding='same')(x)
resized=ResizeLayer(newsize=(91,180))(decoded)
# Model relating observations to field
autoencoder = tf.keras.models.Model(original,resized)
# Choose a loss metric to minimise (RMS)
# and an optimiser to use (adadelta)
autoencoder.compile(optimizer='adadelta', loss='mean_squared_error')
# Train the autoencoder
history=autoencoder.fit(x=training_data,
epochs=n_epochs,
steps_per_epoch=n_steps,
validation_data=test_data,
validation_steps=test_steps,
verbose=2) # One line per epoch
# Save the model
save_file=("%s/Machine-Learning-experiments/"+
"oldstyle_assimilation_1916_prate/"+
"saved_models/Epoch_%04d") % (
os.getenv('SCRATCH'),n_epochs)
if not os.path.isdir(os.path.dirname(save_file)):
os.makedirs(os.path.dirname(save_file))
tf.keras.models.save_model(autoencoder,save_file)
history_file=("%s/Machine-Learning-experiments/"+
"oldstyle_assimilation_1916_prate/"+
"saved_models/history_to_%04d.pkl") % (
os.getenv('SCRATCH'),n_epochs)
pickle.dump(history.history, open(history_file, "wb"))
This actually works. The reconstruction is nothing like as good as with pressure observations, but that’s as expected - there’s much less information about the pressure field in precipitation observations than pressure observations.
Script to make the figure¶
#!/usr/bin/env python
# Model training results plot
import tensorflow as tf
tf.enable_eager_execution()
import numpy
import IRData.twcr as twcr
import iris
import datetime
import argparse
import os
import math
import pickle
import Meteorographica as mg
import matplotlib
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
from matplotlib.figure import Figure
import cartopy
import cartopy.crs as ccrs
# Normalisation - Pa to mean=0, sd=1 - and back
def normalise(x):
x -= 101325
x /= 3000
return x
def unnormalise(x):
x *= 3000
x += 101325
return x
def normalise_prate(x):
x = tf.math.sqrt(x)
x *= 100
return x
class ResizeLayer(tf.keras.layers.Layer):
def __init__(self, newsize=None, **kwargs):
super(ResizeLayer, self).__init__(**kwargs)
self.resize_newsize = newsize
def call(self, input):
return tf.image.resize_images(input, self.resize_newsize,
align_corners=True)
def get_config(self):
return {'newsize': self.resize_newsize}
year=1916
month=3
day=12
hour=6
# Get the 20CR data
#ic=twcr.load('prmsl',datetime.datetime(2009,3,12,18),
ic=twcr.load('prmsl',datetime.datetime(year,month,day,hour),
version='2c')
ic=ic.extract(iris.Constraint(member=1))
#ic=ic.collapsed('member', iris.analysis.MEAN)
icp=twcr.load('prate',datetime.datetime(year,month,day,hour),
version='2c')
icp=icp.extract(iris.Constraint(member=1))
# Make the fake observations
obs=twcr.load_observations_fortime(datetime.datetime(1916,3,12,6),
version='2c')
ensemble=[]
for index, row in obs.iterrows():
ensemble.append(icp.interpolate(
[('latitude',row['Latitude']),
('longitude',row['Longitude'])],
iris.analysis.Linear()).data.item())
ensemble = numpy.array(ensemble, dtype=numpy.float32)
ensemble = normalise_prate(ensemble)
obs_t = tf.convert_to_tensor(ensemble, numpy.float32)
obs_t = tf.reshape(obs_t,[1,488])
# Get the assimilation model
model_save_file=("%s/Machine-Learning-experiments/"+
"oldstyle_assimilation_1916_prate/"+
"saved_models/Epoch_%04d") % (
os.getenv('SCRATCH'),50)
autoencoder=tf.keras.models.load_model(model_save_file,
custom_objects={'ResizeLayer': ResizeLayer})
fig=Figure(figsize=(9.6,10.8), # 1/2HD
dpi=100,
facecolor=(0.88,0.88,0.88,1),
edgecolor=None,
linewidth=0.0,
frameon=False,
subplotpars=None,
tight_layout=None)
canvas=FigureCanvas(fig)
# Top - map showing original and reconstructed fields
# Plot the locations of the stations
projection=ccrs.RotatedPole(pole_longitude=180.0, pole_latitude=90.0)
ax_map=fig.add_axes([0.01,0.51,0.98,0.48],projection=projection)
ax_map.set_axis_off()
extent=[-180,180,-90,90]
ax_map.set_extent(extent, crs=projection)
matplotlib.rc('image',aspect='auto')
# Run the fake through the assimilator and produce an iris cube
pm = ic.copy()
result=autoencoder.predict_on_batch(obs_t)
result=tf.reshape(result,[91,180])
pm.data=unnormalise(result)
# Background, grid and land
ax_map.background_patch.set_facecolor((0.88,0.88,0.88,1))
#mg.background.add_grid(ax_map)
land_img_orig=ax_map.background_img(name='GreyT', resolution='low')
# Station locations
mg.observations.plot(ax_map,obs,radius=0.5,
facecolor='black')
# original pressures as red contours
mg.pressure.plot(ax_map,ic,
scale=0.01,
resolution=0.25,
levels=numpy.arange(870,1050,7),
colors='red',
label=False,
linewidths=1)
# Encoded pressures as blue contours
mg.pressure.plot(ax_map,pm,
scale=0.01,
resolution=0.25,
levels=numpy.arange(870,1050,7),
colors='blue',
label=False,
linewidths=1)
mg.utils.plot_label(ax_map,
'%04d-%02d-%02d:%02d' % (year,month,day,hour),
facecolor=(0.88,0.88,0.88,0.9),
fontsize=8,
x_fraction=0.98,
y_fraction=0.03,
verticalalignment='bottom',
horizontalalignment='right')
# Scatterplot of encoded v original
ax=fig.add_axes([0.08,0.05,0.45,0.4])
aspect=.225/.4*16/9
# Axes ranges from data
dmin=min(ic.data.min(),pm.data.min())
dmax=max(ic.data.max(),pm.data.max())
dmean=(dmin+dmax)/2
dmax=dmean+(dmax-dmean)*1.05
dmin=dmean-(dmean-dmin)*1.05
if aspect<1:
ax.set_xlim(dmin/100,dmax/100)
ax.set_ylim((dmean-(dmean-dmin)*aspect)/100,
(dmean+(dmax-dmean)*aspect)/100)
else:
ax.set_ylim(dmin/100,dmax/100)
ax.set_xlim((dmean-(dmean-dmin)*aspect)/100,
(dmean+(dmax-dmean)*aspect)/100)
ax.scatter(x=pm.data.flatten()/100,
y=ic.data.flatten()/100,
c='black',
alpha=0.5,
marker='.',
s=3)
ax.set(ylabel='20CR2c',
xlabel='Constructed')
ax.grid(color='black',
alpha=0.2,
linestyle='-',
linewidth=0.5)
# Plot the training history
history_save_file=("%s/Machine-Learning-experiments/"+
"oldstyle_assimilation_1916_prate/"+
"saved_models/history_to_%04d.pkl") % (
os.getenv('SCRATCH'),50)
history=pickle.load( open( history_save_file, "rb" ) )
ax=fig.add_axes([0.62,0.05,0.35,0.4])
# Axes ranges from data
ax.set_xlim(0,len(history['loss']))
ax.set_ylim(0,numpy.max(numpy.concatenate((history['loss'],
history['val_loss']))))
ax.set(xlabel='Epochs',
ylabel='Loss (grey) and validation loss (black)')
ax.grid(color='black',
alpha=0.2,
linestyle='-',
linewidth=0.5)
ax.plot(range(len(history['loss'])),
history['loss'],
color='grey',
linestyle='-',
linewidth=2)
ax.plot(range(len(history['val_loss'])),
history['val_loss'],
color='black',
linestyle='-',
linewidth=2)
# Render the figure as a png
fig.savefig("comparison_results.png")