Diagnostic plot for 10-year monthlies testΒΆ
Plot the extracted data from a 10-year monthly image
#!/usr/bin/env python
# Plot the data digitised by Gemini from a 10-year monthly rainfall image
import os
import PIL.Image
import json
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
from matplotlib.figure import Figure
# load the image
img = PIL.Image.open("../../images/monthlies/TYRain_1941-1950_25_pt1-10.jpg")
# load the digitised data
metadata = json.load(open("metadata.json"))
mo = json.load(open("monthly.json"))
totals = json.load(open("totals.json"))
# Create the figure
fig = Figure(
figsize=(13, 10), # Width, Height (inches)
dpi=100,
facecolor=(0.95, 0.95, 0.95, 1),
edgecolor=None,
linewidth=0.0,
frameon=True,
subplotpars=None,
tight_layout=None,
)
canvas = FigureCanvas(fig)
# Image in the left
ax_original = fig.add_axes([0.01, 0.02, 0.47, 0.96])
ax_original.set_axis_off()
imgplot = ax_original.imshow(img, zorder=10)
# Metadata top right
ax_metadata = fig.add_axes([0.52, 0.8, 0.47, 0.15])
ax_metadata.set_xlim(0, 1)
ax_metadata.set_ylim(0, 1)
ax_metadata.set_xticks([])
ax_metadata.set_yticks([])
ax_metadata.text(
0.05,
0.8,
"Station Number: %s" % metadata["StationNumber"],
fontsize=12,
color="black",
)
ax_metadata.text(
0.05,
0.7,
"Location: %s" % metadata["Location"],
fontsize=12,
color="black",
)
ax_metadata.text(
0.05,
0.6,
"Observer: %s" % metadata["Observer"],
fontsize=12,
color="black",
)
ax_metadata.text(
0.05,
0.5,
"County: %s" % metadata["County"],
fontsize=12,
color="black",
)
ax_metadata.text(
0.05,
0.4,
"River Basin: %s" % metadata["River_basin"],
fontsize=12,
color="black",
)
ax_metadata.text(
0.05,
0.3,
"Type of Gauge: %s" % metadata["Type_of_gauge"],
fontsize=12,
color="black",
)
years = []
for year in mo["rainfall"]:
years.append(year["Year"])
years = sorted(years)
# Digitised numbers on the right
ax_digitised = fig.add_axes([0.52, 0.13, 0.47, 0.63])
ax_digitised.set_xlim(years[0] - 0.5, years[-1] + 0.5)
ax_digitised.set_xticks(range(years[0], years[-1] + 1))
ax_digitised.set_xticklabels(years)
ax_digitised.set_ylim(0.5, 12.5)
ax_digitised.set_yticks(range(1, 13))
ax_digitised.set_yticklabels(
(
"Jan",
"Feb",
"Mar",
"Apr",
"May",
"Jun",
"Jul",
"Aug",
"Sep",
"Oct",
"Nov",
"Dec",
)
)
ax_digitised.xaxis.set_ticks_position("top")
ax_digitised.xaxis.set_label_position("top")
ax_digitised.invert_yaxis()
ax_digitised.set_aspect("auto")
monthNumbers = {
"Jan": 1,
"January": 1,
"Feb": 2,
"February": 2,
"Mar": 3,
"March": 3,
"Apr": 4,
"April": 4,
"May": 5,
"Jun": 6,
"June": 6,
"Jul": 7,
"July": 7,
"Aug": 8,
"August": 8,
"Sep": 9,
"September": 9,
"Oct": 10,
"October": 10,
"Nov": 11,
"November": 11,
"Dec": 12,
"December": 12,
}
for year in mo["rainfall"]:
for month in year["rainfall"]:
ax_digitised.text(
year["Year"],
monthNumbers[month["Month"]],
month["rainfall"],
ha="center",
va="center",
fontsize=12,
color="black",
)
# Totals along the bottom
ax_totals = fig.add_axes([0.52, 0.09, 0.47, 0.03])
ax_totals.set_xlim(0.5, 10.5)
ax_totals.set_ylim(0, 1)
ax_totals.set_xticks([])
ax_totals.set_yticks([])
for i, total in enumerate(totals["Totals"]):
ax_totals.text(
i + 1,
0.5,
total,
ha="center",
va="center",
fontsize=12,
color="black",
)
# Render
fig.savefig(
"result.webp",
)