#!/usr/bin/env python
# Plot a comparison of original image and transcription results.
import pickle
import argparse
from PIL import Image
import matplotlib
from matplotlib.backends.backend_agg import \
FigureCanvasAgg as FigureCanvas
from matplotlib.figure import Figure
import matplotlib.patches
import numpy
from google.cloud import vision
from google.cloud.vision import types
# We're going to need the original image
im = Image.open("../../../samples/DWR_1901_03_left.jpg")
imwidth, imheight = im.size
fig=Figure(figsize=((im.size[0]/100)*1.04,
(im.size[1]/100)*1.04),
dpi=100,
facecolor=(0.88,0.88,0.88,1),
edgecolor=None,
linewidth=0.0,
frameon=False,
subplotpars=None,
tight_layout=None)
ax_original=fig.add_axes([0.02,0.02,0.96,0.96],label='original')
ax_result=fig.add_axes([0.02,0.02,0.96,0.96],label='result')
# Matplotlib magic
canvas=FigureCanvas(fig)
# Turn off the axis tics
ax_original.set_axis_off()
ax_result.set_axis_off()
# Put the original image in its half of the figure
ax_original.imshow(im)
# Load the JSON from Textract for this image
document=pickle.load( open( "detection.pkl", "rb" ) )
# Convert box vertex list to numpy array for matplotlib
def bb2p(bb):
result=numpy.zeros((len(bb.vertices),2))
for idx in range(len(bb.vertices)):
result[idx,0]=bb.vertices[idx].x/imwidth
result[idx,1]=1.0-bb.vertices[idx].y/imheight
return result
# Draw all the blocks
zorder=10
for page in document.pages:
for block in page.blocks:
for paragraph in block.paragraphs:
for word in paragraph.words:
bp=matplotlib.patches.Polygon(bb2p(word.bounding_box),
closed=True,
edgecolor=(0,0,1,1),
facecolor=(0,0,1,0.2),
fill=True,
linewidth=0.2,
alpha=0.2,
zorder=zorder)
ax_result.add_patch(bp)
# Draw the image
fig.savefig('DWR_1901.png')