DWR_Quilino (Comparison with 20CRv3 MSLP)

../../../../_images/DWR_Quilino.png

Blue dots are the 20CRv3 MSLP ensemble at the location of the station (80 ensemble members, with data every three hours). Red dots are the station observations. (Once a day, at 14:00 local up to August, at 7:00 local from September 1st).

Code to make the figure

#!/usr/bin/env python

# Plot a comparison of a set of ship obs against 20CRv3

# Requires 20CR data to have already been extracted with get_comparators.py

import os
import pickle
import SEF
import datetime
import numpy

import matplotlib
from matplotlib.backends.backend_agg import \
                 FigureCanvasAgg as FigureCanvas
from matplotlib.figure import Figure

import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--id", help="Station to compare",
                    type=str,required=True)
args = parser.parse_args()

known_bad=False
obs_file="../../../../sef/Argentinian_DWR/1902/%s_MSLP.tsv" % args.id
if not os.path.isfile(obs_file):
    known_bad=True
    obs_file="../../../../sef/Argentinian_DWR/known_bad/1902/%s_MSLP.tsv" % args.id

pickled_20CRdata_dir="%s/sef_comparators/Argentinian_DWR/" % os.getenv('SCRATCH')

# Load the obs
obs=SEF.read_file(obs_file)

# load the pickled 20CR data
rdata={}
rmax=0.0
rmin=1000000.0
start_day=datetime.datetime(1902, 2, 1, 0)
end_day  =datetime.datetime(1902,12,31, 0)
current_day=start_day
while current_day<=end_day:
    for hour in (0,3,6,9,12,15,18,21):
        pfile="%s/%04d/%02d/%02d/%02d/%s_prmsl.pkl" % (pickled_20CRdata_dir,
                                                       current_day.year,
                                                       current_day.month,
                                                       current_day.day,
                                                       hour,args.id)
        fh=open(pfile,'rb')
        nrd=pickle.load(fh)/100.0
        fh.close()
        rmax=max(rmax,max(nrd))
        rmin=min(rmin,min(nrd))
        rdata["%04d%02d%02d%02d" % (current_day.year,current_day.month,
                                    current_day.day,hour)]=nrd
    current_day=current_day+datetime.timedelta(days=1)

# Set up the plot
aspect=16.0/9.0
fig=Figure(figsize=(10.8*aspect,10.8),  # Width, Height (inches)
           dpi=100,
           facecolor=(0.88,0.88,0.88,1),
           edgecolor=None,
           linewidth=0.0,
           frameon=False,
           subplotpars=None,
           tight_layout=None)
canvas=FigureCanvas(fig)
font = {'family' : 'sans-serif',
        'sans-serif' : 'Arial',
        'weight' : 'normal',
        'size'   : 14}
matplotlib.rc('font', **font)

# Single axes - var v. time
ax=fig.add_axes([0.05,0.05,0.945,0.94])
# Axes ranges from data
ax.set_xlim(datetime.datetime(1902, 2,15,0),
            datetime.datetime(1902,12,31,23))
ax.set_ylim(min(rmin,min(obs['Data']['Value']))-1,
            max(rmax,max(obs['Data']['Value']))+1)
ax.set_ylabel('MSLP (hPa)')

# Ensemble values - one point for each member at each time-point
t_jitter=numpy.random.uniform(low=-6,high=6,size=80)
for key in rdata:
    dtime=datetime.datetime(int(key[0:4]),int(key[4:6]),int(key[6:8]),
                            int(key[8:10]))
    ensemble=rdata[key] # in hPa
    dates=[dtime+datetime.timedelta(hours=t) for t in t_jitter]
    ax.scatter(dates,ensemble,
                    5,
                    'blue', # Color
                    marker='.',
                    edgecolors='black',
                    linewidths=0.0,
                    alpha=0.3,
                    zorder=50)

# Observations
for index, row in obs['Data'].iterrows():
    if row['Value'] != row['Value']: continue  # Missing data
    dte=datetime.datetime(row['Year'],row['Month'],row['Day'],int(row['HHMM']/100),
                             row['HHMM']%100)
    ax.scatter(dte,row['Value'],
                    100,
                    'red', # Color
                    marker='.',
                    edgecolors='red',
                    linewidths=0.0,
                    alpha=1.0,
                    zorder=100)
    
figfile='figures/pressure_comparison/%s.png' % args.id
if known_bad:
    figfile='figures/known_bad/pressure_comparison/%s.png' % args.id
fig.savefig(figfile)

This script requires pre-extracted 20CRv3 data: