An all-convolutional autoencoder¶
The original convolutional autoencoder alternates convolutional layers with max-pooling layers or upsampling layers to reduce or expand the state.
Springenberg et al. pointed out that you could do the same using only convolutional layers - using strided convolutiona instead of convolutions and max-pooling, and strided transpose convolutions instead of convolutions and up-sampling. This ought to work better, because the layers can learn up- and down-sampling methods instead of imposing them, and Radford et al. found that it was a big improvement.
A complication is the requirement to preserve periodic boundary conditions in latitude, and to handle variable grid sizes: * A 3x3 convolution reduces an mxn grid to (m-2)x(n-2), and it’s desirable to have an odd number of grid points to keep things symmetric. So before doing a 3x3 convolution we should have m and n both odd and add an extra layer of cells around the edge - periodic boundary conditions in longitude, and reflection padding in latitude. The GlobePadLayer applies this padding. * So start with an m*n layer (m,n both odd). Pad -> (m+2)*(n+2). 3x3 convolution -> back to m*n. * A 3x3 convolution with stride 2 reduces an mxn grid to ((m-1)/2)x((n-1)/2). * So, start with an m*n layer (m,n both odd). 3x3 convolution with stride 2 -> ((m-1)/2)x((n-1)/2), both odd. * A 3x3 transpose convolution with stride 2 upscales a m*n grid to ((m-2)*2)x((n-2)*2) always an even number. So in the encoding phase, m and n are both always odd, if we start with a 129x257 grid (generally 2^n+1x2^(n+1)+1 for approximately square pixels). 3 reduction layers (3x3 convolution with stride 2) will take this down to 17x33. Decoding that 3 times (3x3 transpose convolution with stride 2) will bump it back up to 108x212. So we need to resize at both ends.
The change is simple to make:
#!/usr/bin/env python
# Convolutional autoencoder for 20CR prmsl fields.
# This version is all-convolutional - it uses strided convolutions
# instead of max-pooling, and transpose convolution instead of
# upsampling.
import os
import tensorflow as tf
import ML_Utilities
import pickle
import numpy
# How many epochs to train for
n_epochs=50
# Create TensorFlow Dataset object from the prepared training data
(tr_data,n_steps) = ML_Utilities.dataset(purpose='training',
source='20CR2c',
variable='prmsl')
tr_data = tr_data.repeat(n_epochs)
# Also produce a tuple (source,target) for model
def to_model(ict):
ict=tf.reshape(ict,[91,180,1])
return(ict,ict)
tr_data = tr_data.map(to_model)
tr_data = tr_data.batch(1)
# Similar dataset from the prepared test data
(tr_test,test_steps) = ML_Utilities.dataset(purpose='test',
source='20CR2c',
variable='prmsl')
tr_test = tr_test.repeat(n_epochs)
tr_test = tr_test.map(to_model)
tr_test = tr_test.batch(1)
# Need to resize data so it's dimensions are a multiple of 8 (3*2-fold pool)
class ResizeLayer(tf.keras.layers.Layer):
def __init__(self, newsize=None, **kwargs):
super(ResizeLayer, self).__init__(**kwargs)
self.resize_newsize = newsize
def call(self, input):
return tf.image.resize_images(input, self.resize_newsize,
align_corners=True)
def get_config(self):
return {'newsize': self.resize_newsize}
# Padding and pruning functions for periodic boundary conditions
class LonPadLayer(tf.keras.layers.Layer):
def __init__(self, index=3, padding=8, **kwargs):
super(LonPadLayer, self).__init__(**kwargs)
self.lon_index = index
self.lon_padding = padding
def build(self, input_shape):
self.lon_tile_spec=numpy.repeat(1,len(input_shape))
self.lon_tile_spec[self.lon_index-1]=3
self.lon_expansion_slice=[slice(None, None, None)]*len(input_shape)
self.lon_expansion_slice[self.lon_index-1]=slice(
input_shape[self.lon_index-1].value-self.lon_padding,
input_shape[self.lon_index-1].value*2+self.lon_padding,
None)
self.lon_expansion_slice=tuple(self.lon_expansion_slice)
def call(self, input):
return tf.tile(input, self.lon_tile_spec)[self.lon_expansion_slice]
def get_config(self):
return {'index': self.lon_index}
return {'padding': self.lon_padding}
class LonPruneLayer(tf.keras.layers.Layer):
def __init__(self, index=3, padding=8, **kwargs):
super(LonPruneLayer, self).__init__(**kwargs)
self.lon_index = index
self.lon_padding = padding
def build(self, input_shape):
self.lon_prune_slice=[slice(None, None, None)]*len(input_shape)
self.lon_prune_slice[self.lon_index-1]=slice(
self.lon_padding,
input_shape[self.lon_index-1].value-self.lon_padding,
None)
self.lon_prune_slice=tuple(self.lon_prune_slice)
def call(self, input):
return input[self.lon_prune_slice]
def get_config(self):
return {'index': self.lon_index}
return {'padding': self.lon_padding}
# Input placeholder
original = tf.keras.layers.Input(shape=(91,180,1,))
# Resize to have dimesions divisible by 8
resized = ResizeLayer(newsize=(80,160))(original)
# Wrap-around in longitude for periodic boundary conditions
padded = LonPadLayer(padding=8)(resized)
# Encoding layers
x = tf.keras.layers.Conv2D(16, (3, 3), padding='same')(padded)
x = tf.keras.layers.LeakyReLU()(x)
x = tf.keras.layers.Conv2D(8, (3, 3), strides= (2,2), padding='valid')(x)
x = tf.keras.layers.LeakyReLU()(x)
x = tf.keras.layers.Conv2D(8, (3, 3), strides= (2,2), padding='valid')(x)
x = tf.keras.layers.LeakyReLU()(x)
x = tf.keras.layers.Conv2D(8, (3, 3), strides= (2,2), padding='valid')(x)
x = tf.keras.layers.LeakyReLU()(x)
encoded = x
# Decoding layers
x = tf.keras.layers.Conv2DTranspose(8, (3, 3), strides= (2,2), padding='valid')(encoded)
x = tf.keras.layers.LeakyReLU()(x)
x = tf.keras.layers.Conv2DTranspose(8, (3, 3), strides= (2,2), padding='valid')(x)
x = tf.keras.layers.LeakyReLU()(x)
x = tf.keras.layers.Conv2DTranspose(8, (3, 3), strides= (2,2), padding='valid')(x)
x = tf.keras.layers.LeakyReLU()(x)
decoded = tf.keras.layers.Conv2D(1, (3, 3), padding='same')(x)
# Strip the longitude wrap-around
pruned=LonPruneLayer(padding=8)(decoded)
# Restore to original dimensions
outsize=ResizeLayer(newsize=(91,180))(pruned)
# Model relating original to output
autoencoder = tf.keras.models.Model(original,outsize)
# Choose a loss metric to minimise (RMS)
# and an optimiser to use (adadelta)
autoencoder.compile(optimizer='adadelta', loss='mean_squared_error')
# Train the autoencoder
history=autoencoder.fit(x=tr_data,
epochs=n_epochs,
steps_per_epoch=n_steps,
validation_data=tr_test,
validation_steps=test_steps,
verbose=2) # One line per epoch
# Save the model
save_file=("%s/Machine-Learning-experiments/"+
"convolutional_autoencoder_perturbations/"+
"all_convolutional/saved_models/Epoch_%04d") % (
os.getenv('SCRATCH'),n_epochs)
if not os.path.isdir(os.path.dirname(save_file)):
os.makedirs(os.path.dirname(save_file))
tf.keras.models.save_model(autoencoder,save_file)
history_file=("%s/Machine-Learning-experiments/"+
"convolutional_autoencoder_perturbations/"+
"all_convolutional/saved_models/history_to_%04d.pkl") % (
os.getenv('SCRATCH'),n_epochs)
pickle.dump(history.history, open(history_file, "wb"))
It’s not much better than the the original convolutional version, but it does train faster.
Script to make the figure¶
#!/usr/bin/env python
# Model training results plot
import tensorflow as tf
tf.enable_eager_execution()
import numpy
import IRData.twcr as twcr
import iris
import datetime
import argparse
import os
import math
import pickle
import Meteorographica as mg
import matplotlib
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
from matplotlib.figure import Figure
import cartopy
import cartopy.crs as ccrs
# Get the 20CR data
ic=twcr.load('prmsl',datetime.datetime(2009,3,12,18),
version='2c')
ic=ic.extract(iris.Constraint(member=1))
# Need to resize data so it's dimensions are a multiple of 8 (3*2-fold pool)
class ResizeLayer(tf.keras.layers.Layer):
def __init__(self, newsize=None, **kwargs):
super(ResizeLayer, self).__init__(**kwargs)
self.resize_newsize = newsize
def build(self, input_shape):
self.resize_newsize *= 1
def call(self, input):
return tf.image.resize_images(input, self.resize_newsize,
align_corners=True)
def get_config(self):
return {'newsize': self.resize_newsize}
# Padding and pruning functions for periodic boundary conditions
class LonPadLayer(tf.keras.layers.Layer):
def __init__(self, index=3, padding=8, **kwargs):
super(LonPadLayer, self).__init__(**kwargs)
self.lon_index = index
self.lon_padding = padding
def build(self, input_shape):
self.lon_tile_spec=numpy.repeat(1,len(input_shape))
self.lon_tile_spec[self.lon_index-1]=3
self.lon_expansion_slice=[slice(None, None, None)]*len(input_shape)
self.lon_expansion_slice[self.lon_index-1]=slice(
input_shape[self.lon_index-1].value-self.lon_padding,
input_shape[self.lon_index-1].value*2+self.lon_padding,
None)
self.lon_expansion_slice=tuple(self.lon_expansion_slice)
def call(self, input):
return tf.tile(input, self.lon_tile_spec)[self.lon_expansion_slice]
def get_config(self):
return {'index': self.lon_index}
return {'adding': self.lon_padding}
class LonPruneLayer(tf.keras.layers.Layer):
def __init__(self, index=3, padding=8, **kwargs):
super(LonPruneLayer, self).__init__(**kwargs)
self.lon_index = index
self.lon_padding = padding
def build(self, input_shape):
self.lon_prune_slice=[slice(None, None, None)]*len(input_shape)
self.lon_prune_slice[self.lon_index-1]=slice(
self.lon_padding,
input_shape[self.lon_index-1].value-self.lon_padding,
None)
self.lon_prune_slice=tuple(self.lon_prune_slice)
def call(self, input):
return input[self.lon_prune_slice]
def get_config(self):
return {'index': self.lon_index}
return {'padding': self.lon_padding}
# Get the autoencoder
model_save_file=("%s/Machine-Learning-experiments/"+
"convolutional_autoencoder_perturbations/"+
"all_convolutional/saved_models/Epoch_%04d") % (
os.getenv('SCRATCH'),50)
autoencoder=tf.keras.models.load_model(model_save_file,
custom_objects={'LonPadLayer': LonPadLayer,
'LonPruneLayer': LonPruneLayer,
'ResizeLayer': ResizeLayer})
# Normalisation - Pa to mean=0, sd=1 - and back
def normalise(x):
x -= 101325
x /= 3000
return x
def unnormalise(x):
x *= 3000
x += 101325
return x
fig=Figure(figsize=(9.6,10.8), # 1/2 HD
dpi=100,
facecolor=(0.88,0.88,0.88,1),
edgecolor=None,
linewidth=0.0,
frameon=False,
subplotpars=None,
tight_layout=None)
canvas=FigureCanvas(fig)
# Top - map showing original and reconstructed fields
projection=ccrs.RotatedPole(pole_longitude=180.0, pole_latitude=90.0)
ax_map=fig.add_axes([0.01,0.51,0.98,0.48],projection=projection)
ax_map.set_axis_off()
extent=[-180,180,-90,90]
ax_map.set_extent(extent, crs=projection)
matplotlib.rc('image',aspect='auto')
# Run the data through the autoencoder and convert back to iris cube
pm=ic.copy()
pm.data=normalise(pm.data)
ict=tf.convert_to_tensor(pm.data, numpy.float32)
ict=tf.reshape(ict,[1,91,180,1])
result=autoencoder.predict_on_batch(ict)
result=tf.reshape(result,[91,180])
pm.data=unnormalise(result)
# Background, grid and land
ax_map.background_patch.set_facecolor((0.88,0.88,0.88,1))
#mg.background.add_grid(ax_map)
land_img_orig=ax_map.background_img(name='GreyT', resolution='low')
# original pressures as red contours
mg.pressure.plot(ax_map,ic,
scale=0.01,
resolution=0.25,
levels=numpy.arange(870,1050,7),
colors='red',
label=False,
linewidths=1)
# Encoded pressures as blue contours
mg.pressure.plot(ax_map,pm,
scale=0.01,
resolution=0.25,
levels=numpy.arange(870,1050,7),
colors='blue',
label=False,
linewidths=1)
mg.utils.plot_label(ax_map,
'%04d-%02d-%02d:%02d' % (2009,3,12,6),
facecolor=(0.88,0.88,0.88,0.9),
fontsize=8,
x_fraction=0.98,
y_fraction=0.03,
verticalalignment='bottom',
horizontalalignment='right')
# Scatterplot of encoded v original
ax=fig.add_axes([0.08,0.05,0.45,0.4])
aspect=.225/.4*16/9
# Axes ranges from data
dmin=min(ic.data.min(),pm.data.min())
dmax=max(ic.data.max(),pm.data.max())
dmean=(dmin+dmax)/2
dmax=dmean+(dmax-dmean)*1.05
dmin=dmean-(dmean-dmin)*1.05
if aspect<1:
ax.set_xlim(dmin/100,dmax/100)
ax.set_ylim((dmean-(dmean-dmin)*aspect)/100,
(dmean+(dmax-dmean)*aspect)/100)
else:
ax.set_ylim(dmin/100,dmax/100)
ax.set_xlim((dmean-(dmean-dmin)*aspect)/100,
(dmean+(dmax-dmean)*aspect)/100)
ax.scatter(x=pm.data.flatten()/100,
y=ic.data.flatten()/100,
c='black',
alpha=0.25,
marker='.',
s=2)
ax.set(ylabel='Original',
xlabel='Encoded')
ax.grid(color='black',
alpha=0.2,
linestyle='-',
linewidth=0.5)
# Plot the training history
history_save_file=("%s/Machine-Learning-experiments/"+
"convolutional_autoencoder_perturbations/"+
"all_convolutional/saved_models/history_to_%04d.pkl") % (
os.getenv('SCRATCH'),50)
history=pickle.load( open( history_save_file, "rb" ) )
ax=fig.add_axes([0.62,0.05,0.35,0.4])
# Axes ranges from data
ax.set_xlim(0,len(history['loss']))
ax.set_ylim(0,numpy.max(numpy.concatenate((history['loss'],
history['val_loss']))))
ax.set(xlabel='Epochs',
ylabel='Loss (grey) and validation loss (black)')
ax.grid(color='black',
alpha=0.2,
linestyle='-',
linewidth=0.5)
ax.plot(range(len(history['loss'])),
history['loss'],
color='grey',
linestyle='-',
linewidth=2)
ax.plot(range(len(history['val_loss'])),
history['val_loss'],
color='black',
linestyle='-',
linewidth=2)
# Render the figure as a png
fig.savefig("comparison_results.png")