# Specify a Deep Convolutional Variational AutoEncoder
# for the haduk-grid Tmax fields
# Based on the TF tutorial at:
# https://www.tensorflow.org/tutorials/generative/cvae
import tensorflow as tf
import numpy as np
import sys
class DCVAE(tf.keras.Model):
def __init__(self):
super(DCVAE, self).__init__()
self.latent_dim = 20
self.encoder = tf.keras.Sequential(
[
tf.keras.layers.InputLayer(input_shape=(1440, 896, 1)),
# tf.keras.layers.Dropout(0.2),
tf.keras.layers.Conv2D(
filters=5,
kernel_size=3,
strides=(2, 2),
padding="same",
activation="relu",
),
# tf.keras.layers.Dropout(0.2),
tf.keras.layers.Conv2D(
filters=5,
kernel_size=3,
strides=(2, 2),
padding="same",
activation="relu",
),
# tf.keras.layers.SpatialDropout2D(0.2),
tf.keras.layers.Conv2D(
filters=10,
kernel_size=3,
strides=(2, 2),
padding="same",
activation="relu",
),
# tf.keras.layers.SpatialDropout2D(0.2),
tf.keras.layers.Conv2D(
filters=20,
kernel_size=3,
strides=(2, 2),
padding="same",
activation="relu",
),
# tf.keras.layers.SpatialDropout2D(0.2),
tf.keras.layers.Conv2D(
filters=40,
kernel_size=3,
strides=(2, 2),
padding="same",
activation="relu",
),
# tf.keras.layers.SpatialDropout2D(0.2),
tf.keras.layers.Flatten(),
# No activation
tf.keras.layers.Dense(self.latent_dim + self.latent_dim),
# tf.keras.layers.BatchNormalization(),
# tf.keras.layers.GaussianNoise(2.0),
]
)
self.decoder = tf.keras.Sequential(
[
tf.keras.layers.InputLayer(input_shape=(self.latent_dim,)),
# tf.keras.layers.InputLayer(input_shape=(5*10*20)),
tf.keras.layers.Dense(units=45 * 28 * 40, activation=tf.nn.relu),
tf.keras.layers.Reshape(target_shape=(45, 28, 40)),
tf.keras.layers.Conv2DTranspose(
filters=20,
kernel_size=3,
strides=2,
padding="same",
activation="relu",
),
tf.keras.layers.Conv2DTranspose(
filters=10,
kernel_size=3,
strides=2,
padding="same",
activation="relu",
),
tf.keras.layers.Conv2DTranspose(
filters=5,
kernel_size=3,
strides=2,
padding="same",
activation="relu",
),
tf.keras.layers.Conv2DTranspose(
filters=5,
kernel_size=3,
strides=2,
padding="same",
activation="relu",
),
# No activation
tf.keras.layers.Conv2DTranspose(
filters=1, kernel_size=3, strides=2, padding="same"
),
]
)
def encode(self, x):
mean, logvar = tf.split(self.encoder(x), num_or_size_splits=2, axis=1)
return mean, logvar
def decode(self, z):
decoded = self.decoder(z)
return decoded
def call(self, x):
mean, logvar = self.encode(x)
latent = self.reparameterize(mean, logvar)
encoded = self.decode(latent)
return encoded
def reparameterize(self, mean, logvar):
eps = tf.random.normal(shape=mean.shape)
return eps * tf.exp(logvar * 0.5) + mean
# Decode each member of the batch several times, to make a sample
# returns a 4d tensor (size, batch, y, x)
def sample_decode(self, mean, logvar, size=100):
encoded = []
eps = tf.random.normal(shape=(size, self.latent_dim))
mean = tf.unstack(mean, axis=0)
logvar = tf.unstack(logvar, axis=0)
for batchI in range(len(mean)):
latent = eps * tf.exp(logvar[batchI] * 0.5) + mean[batchI]
encoded.append(self.decode(latent))
return tf.stack(encoded, axis=0)
# Autoencode each member of the batch several times, to make a sample
def sample_call(self, x, size=100):
mean, logvar = self.encode(x)
encoded = self.sample_decode(mean, logvar, size=size)
return encoded
def log_normal_pdf(sample, mean, logvar, raxis=1):
log2pi = tf.math.log(2.0 * np.pi)
return tf.reduce_sum(
-0.5 * ((sample - mean) ** 2.0 * tf.exp(-logvar) + logvar + log2pi), axis=raxis
)
def compute_loss(model, x):
mean, logvar = model.encode(x)
latent = model.reparameterize(mean, logvar)
encoded = model.decode(latent)
rmse = tf.reduce_mean(tf.keras.metrics.mean_squared_error(encoded, x), axis=[1, 2])
# print(rmse)
logpz = log_normal_pdf(latent, 0.0, 0.0)
# print(logpz)
# sys.exit(0)
logqz_x = log_normal_pdf(latent, mean, logvar)
return (rmse * 1000000, logpz, logqz_x)
@tf.function # Optimiser ~25% speedup on VDI (CPU-only)
def train_step(model, x, optimizer):
"""Executes one training step and returns the loss.
This function computes the loss and gradients, and uses the latter to
update the model's parameters.
"""
with tf.GradientTape() as tape:
(rmse, logpz, logqz_x) = compute_loss(model, x)
metric = tf.reduce_mean(rmse - logpz + logqz_x)
gradients = tape.gradient(metric, model.trainable_variables)
optimizer.apply_gradients(zip(gradients, model.trainable_variables))